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Abstract This paper describes a novel framework for a
smart threat detection system that uses computer vision to
capture, exploit and interpret the temporal flow of events
related to the abandonment of an object. Our approach uses
contextual information along with an analysis of the causal
progression of events to decide whether or not an alarm
should be raised. When an unattended object is detected,
the system traces it back in time to determine and record
who its most likely owner(s) may be. Through subsequent
frames, the system searches the scene for the owner and
issues an alert if no match is found for the owner over a given
period of time. Our algorithm has been successfully tested on
two benchmark datasets (PETS 2006 Benchmark Data, 2006;
i-LIDS Dataset for AVSS, 2007), and yielded results that are
substantially more accurate than similar systems developed
by other academic and industrial research groups.
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1 Introduction

In recent years, owing to the increasingly ubiquitous presence
of cameras, the design of automatic surveillance systems for
event recognition in crowded public areas has received much
attention. The goal is to equip intelligent systems with the
ability to reliably detect the possibility of danger. Such sys-
tems must prove their effectiveness in complex situations
involving significant crowds, clutter and occlusion. They
must be economically feasible and practically realizable in
real-time, so as to be able to alert the authorities in a timely
fashion to avert potential harm. Like all image processing
frameworks, they must be able to successfully overcome the
problems of lighting, viewpoint changes, noise and other
distortions. The greatest challenge, perhaps, for such threat
detection systems is to achieve a low rate of false positives
and more importantly, a near-zero rate of false negatives.

This paper describes a powerful framework for a system
that utilizes multiple spatio-temporal and contextual cues to
detect a given sequence of events. Here, we tackle the spe-
cific threat posed by baggage abandoned in public areas.
Our approach draws inspiration from the typical workings
of a human operator. When a curiously unattended object
becomes visible, the operator is likely to review the tape
closely to determine how it came to be left there and to ascer-
tain whether it has been abandoned or if its owner has simply
stepped away momentarily. If the owner is still present in the
scene, there may not be a reason to be concerned, but if he
or she cannot be found, it is certainly a cause for the alarm.

Similarly, in our framework, if a lone object is discov-
ered in the scene, the system tracks it backwards through
recent video to look for its owner. The owner of the bag-
gage is assumed to be the person who brings the object into
the scene and sets it down at the location it is found. By
inspecting the frames when the object was in contact with a
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human entity, distinctive features of its candidate owner(s)
are acquired. These features are then used to search for the
owner in subsequent frames. If no suitable match is found
for a predefined period of time, the object is deemed as aban-
doned and an alarm is raised. If a match is eventually found
(i.e. if the owner returns to the suspicious object), the alarm
is defused.

The rest of this paper is organized as follows. We review
recent works on detection of baggage abandonment in Sect. 2.
A detailed description of our methodology is presented in
Sect. 3. Strengths and shortcomings of our framework are
demonstrated experimentally and some concerns are addre-
ssed in Sect. 4. Section 5 wraps up the paper with a summary
of our work, its applicability and several interesting direc-
tions worth exploring in the future.

2 Previous works

The abandoned baggage problem has recently attracted con-
siderable interests, and solutions have been attempted in
many different ways, each inevitably with its own limita-
tions. Several tracking models have been proposed based on
a variety of techniques.

Lv et al. [11] combine a Kalman filter-based blob tracker
with a shape-based human tracker to detect people and objects
in motion. Event detection is set up in a Bayesian infer-
ence framework. Stauffer and Grimson [19] present an event
detection module that classifies objects, including abandoned
objects, using a neural network, but is limited to detecting
only one abandoned object at a time. The probabilistic track-
ing model proposed by Smith et al. [18] is built of a mixed-
state dynamic Bayesian network and a trans-dimensional
Markov chain Monte Carlo (MCMC) method. Bhargava et al.
[3] characterize the event of object abandonment by its con-
stituent sub-events. Their algorithm verifies the sequence of
foreground observations by pre-defined event representation
and temporal constraints.

Adaptive background subtraction (ABS) has been a rather
popular choice to detect unknown, changed or removed arti-
cles in the foreground. ABS methods, such as those described
in [5,10], build and maintain a statistical model of the back-
ground, usually implemented in conjunction with an object
tracker. Porikli [15] demonstrates static object detection using
long-term and short-term backgrounds constructed using dif-
ferent adaptation rates. However, in general, ABS-based sys-
tems run the risk of integrating stationary foreground objects
into the background before they are actually deserted. Their
performance also suffers considerably from foreground
clutter.

Much work has also been done on multi-view surveillance
systems [2,12]. Such systems offer the significant merits of
inferring the 3D spatial position of all objects, their depth,

size and motion. Although such systems have been largely
successful, the deployment of multiple cameras per location
is usually not practical in wide spread public areas such as
the railways. Our goal is to be able to utilize existing camera
facilities for monitoring in public space, demanding little or
no changes or additional expense. Thus, we limit our work
to monocular image sequences.

3 Algorithm for event recognition

The proposed algorithm imitates the process flow of a human
operator who decides whether someone has actually left an
object at the scene or only stepped away momentarily. Our
current approach to the problem is not based on individ-
ual tracking of all people and objects; instead, the system
only searches for objects left by themselves. If an unattended
object is detected, the system proceeds to look for its most
likely owner and creates the owner’s appearance model. An
alarm is triggered if the owner is not found in the area for
longer than a set period of time.

Our method is designed to capture and exploit the tempo-
ral flow of events related to the abandonment of an object.
Adapted from Allen and Ferguson’s classic temporal interval
representation of events [1], the upper part of Fig. 1 illustrates
the formal representation of the task. Their representational
framework applies temporal interval logic to define the rela-
tionships between actions, events, and their effects. An event
is defined as having occurred if and only if a given sequence
of observations matches the formal event representation and
meets the pre-specified temporal constraints. Allen’s repre-
sentation has been used extensively in a variety of applica-
tions, with some recent works by Ryoo and Aggarwal [16]
and Nevatia et al. [13] for activity recognition using computer
vision.

Likewise, we define the activity of abandonment of an
object in terms of four sub-events that lead to it: the entry
of the owner with the object, departure of the owner without
the object, abandonment of the object and subsequent timed
alarm, and the possible return of the owner to the (vicinity
of the) object. Event inference follows from the detection of
each of these sub-events or intervals, as depicted in Fig. 1.
The sub-events to be recognized are causally related, i.e., the
confirmation of one sub-event triggers the search for the next.

Our algorithm is composed of three computational mod-
ules which capture each of the sub-events and verify their
temporal relationship as a whole. These modules are devised
to perform the following sub-tasks: detection of unattended
object(s), reverse traversal through previous frames to dis-
cover likely owner(s), and the continued observation of the
scene. The process is preceded by a basic preprocessing stage
that may vary depending on the dataset.

123



Detection of object abandonment using temporal logic 273

Fig. 1 Sequence of events (top axis) in time and progression of the
system algorithm (lowest axis). Module I detects an unattended bag-
gage and initiates Module II, which traverses through previous frames
and collects appearance samples from candidate owners. Module III

monitors the scene to verify the existence of the owner. A timer is set
if the owner is not found, and an alarm is triggered if the owner fails to
return within t s

To ensure clarity, the algorithm is described in terms of one
abandoned object and one rightful owner. It must be noted
that the framework can be extended to handle concurrently
multiple abandoned objects and their corresponding owners.
Also, since our unattended object detector is an independent
module, it can be trained to pick out any kind of object by
shapes, given a sufficient number of samples. Current exper-
imental datasets were staged at a busy subway station and
involve one baggage with one owner, or two people traveling
together (in close proximity) with the baggage.

3.1 Low-level processing

Reliable low-level processing is crucial for any computer
vision system. To acquire foreground blobs for later analysis,
we perform background subtraction and several image pre-
processing steps on each frame. To give the system a ready
applicability in different scenarios, a background model is
automatically estimated from the image sequence itself. The
background initialization algorithm proposed by Chen and
Aggarwal [4] is used to construct the background model. This
algorithm is derived from [6], which identifies stable inter-
vals of intensity values at each pixel, and determines which
interval is most likely to display the true background based
on local optical flow information. In [4], the critical pro-
cess of parameter estimation is performed by approximating
the scale of foreground activities under multiple resolutions.
However, due to different foreground depths, objects closer
to the camera will dominate the distribution of optical flow
and the influence of background visibility from the farther
objects can be overwhelmed. They discovered and solved
this problem by equalizing the density of optical flow. Their
method has been shown to yield impressive results indoors
and outdoors.

Background subtraction is performed in the HSV color
space, which inherently offers greater robustness to chan-
ges in illumination (such as the occurrence of shadows).

A series of morphological operations is carried out to clean
up the image, preserving only the blobs of interest (based on
size and position). Subsequent processing deals exclusively
with the resultant foreground blobs.

3.2 Detection of unattended objects

The goal of the first module of the algorithm is the detection
of any object that seems to be unattended. The system does
not track and monitor ongoing activities until the occurrence
of such an event. The focus of this paper is on the detection of
abandoned baggage in public places. Baggage may include
suitcases, sports bags, rucksacks, backpacks, boxes, etc. The
algorithm may be suitably tailored to identify other kinds of
objects as well. The basis for anticipating the possible assort-
ment of object classes is both site- and application-specific.

It is assumed that unattended baggage may be any bag-
gage-like foreground blob that can be seen as distinctly sepa-
rate from nearby blobs for at least a short period of time. The
k-nearest neighbor (k-NN) classifier is used to classify fore-
ground blobs in new frames as belonging to the baggage or
non-baggage class. Baggage is defined as a solid, contiguous
entity that usually does not exceed half the height of an aver-
age adult. Thus, classification is based on the size and shape
of binary foreground blobs. However, the bag handle or hand-
grip poses a special problem by distorting the generic shape
of the baggage. To avoid misclassification, morphological
‘open’ operations are performed on the binary foreground
image using cross-shaped structural elements, which were
found effective in removing the deforming handgrips while
retaining the main body of the baggage.

The k-NN classifier is trained off-line using positive exam-
ples collected through Google Image Search. Negative exam-
ples used include non-baggage segments selected from the
data sequences. The current system uses feature vectors from
about 60 positive and 120 negative image samples. The
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following properties are used to characterize each training
instance:

• Compactness: the ratio of area to squared perimeter (mul-
tiplied by 4π for normalization)

• Solidity ratio: the extent to which the blob area covers the
convex hull area

• Eccentricity: the ratio of major axis to minor axis of the
ellipse that envelopes the blob

• Orientation
• Size

The size of each binary blob is normalized to compen-
sate for perspective distortion. To estimate the normalization
weights from the training set, passengers’ torso areas and the
corresponding centroid y-coordinates are recorded. Using
polynomial regression, a function of normalization weight
versus y-coordinate is then computed.

A simple 3-nearest neighbor classifier is applied to detect
baggage-like objects. Owing to the simplicity of the binary
classifier and the features used, execution time is minimal.
To verify the decision of the classifier, each suspicious
baggage-like blob is tracked over a fixed number of con-
secutive frames (about eight) to ensure the consistency of
detection and position. Temporary false classifications and
moving baggage are rejected by employing temporal fil-
tering. Thus, with the use of temporal filtering, sporadic
false classification, especially due to moving baggage, is
avoided. Once an object is identified as being unattended,
the next module is initiated to search for its potential
owner(s).

3.3 Reverse traversal for searching candidate owners

In crowded environments where baggage appears to have
been abandoned, a human operator is likely to rewind the
video to the ‘drop-off’ point. The operator then carefully
observes the movements and behaviors of all passengers to
gauge the most likely owner. This module of our system
acts in much the same way. Once an unattended baggage
is located, the system traces it through previous frames to
search for the moment when the baggage was first brought to
and placed at the detected location. The event of the owner
setting down the baggage maximizes the likelihood of the
owner’s presence in the neighborhood of the baggage and, as
a result, provides the system with the best timing for collect-
ing the owner’s appearance model.

Most of the backtracking stage is implemented in a
straightforward manner to facilitate speedy traversal of the
frames of interest, i.e. when the baggage was first visibly
introduced in the immediate neighborhood of its detected
location. Initial tracking is based solely on the location and
size of the blob, regardless of its appearance. The presence

of any blob of approximately the same size occupying the
same spot as the detected baggage is assumed to indicate
the presence of the baggage. This supposition may result in
overshooting of the desired frames, which can occur in the
event when the entry of the baggage at the position is not
clearly visible. This method of matching based only on posi-
tional overlap accounts for instances of severe occlusion of
the baggage, thereby reducing the chances of mistaking the
wrong person(s) as the possible owner(s).

When no valid blob can be found at the anticipated area,
it is inferred that the baggage was being moved and ought
to appear elsewhere nearby. Note that while backtracking
in time, the movement of the baggage corresponds to the
past event of the owner arriving at the location with the bag-
gage. The algorithm then performs template-matching using
a similarity measure that combines grayscale image correla-
tion with similarity of color to search for the baggage in the
neighborhood region.

Normalized cross-correlation (NCC) [9] is extensively
used in the field of image processing as a correlation measure
for template matching, since it is invariant to changes in illu-
mination. A map of correlation coefficients, γ , is computed
according to Eq. (1) for every gray level image patch and
a designated matching region of foreground. The template
patch f is positioned at (k, l) of the foreground sub-image I .
Ik,l represents the foreground area covered by the patch. f
and I k,l are the mean intensities of the corresponding areas.
(kmax, lmax) is the location of the peak in the cross-correlation
matrix |γ |.

γ (k, l)

=
∑

x,y∈Ik,l
(I (x, y) − I k,l)( f (x − k, y − l) − f )

[∑
x,y∈Ik,l

(I (x, y) − I k,l)2
∑

x,y∈Ik,l
( f (x − k, y − l) − f )2

] 1
2

(1)

The mean color of the sub-image window that corresponds
to Ikmax,lmax is compared with the mean color of the patch in
the HSV domain. The metric used to guage similarity, ci, j ,
between any two HSV colors [17], mi = (hi , si , vi ) and
m j = (h j , s j , v j ), is shown in Eq. (2). Both

∣
∣γ (kmax,lmax)

∣
∣

and ci, j range between 0 and 1. The average of the two dis-
tances is used as a combined measure to quantify the degree
of matching.

ci, j = 1 − 1√
5

[
(vi − v j )

2 + (si cos(hi ) − s j cos(h j ))
2

+ (si sin(hi ) − s j sin(h j ))
2
] 1

2
(2)

Two situations can arise from the outcome of correlation in
a frame: either the baggage is found in the neighborhood or it
is not. Detailed procedures for handling the two possibilities
are discussed below.
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Fig. 2 The patch bank consists of informative image patches in the
neighborhood of the back-tracked baggage, which are collected when
the owner brings the baggage into the scene. The sampling grids are
devised to coarsely account for perspective distortion

Situation 1: If the baggage is found, it may be inferred that the
baggage was being moved or carried at the time, presumably
by its owner. The foreground segments in its neighborhood
can thus be considered as representatives of the candidate
owners. To retain the appearance model of candidate owners,
we define a patch bank comprising of a pool of foreground
image patches. Rectangular patches are extracted from the
desired foreground region, as shown in Fig. 2. Sampling grids
are devised to account for perspective distortion so that each
patch coarsely covers the same area. Patches contain only a
small fraction of foreground area (less than 50% of the patch
area) or are lack of texture (measured by entropy) are dis-
carded. The system continues backtracking until the begin-
ning of the video stream is reached or a sufficient number of
patches are collected (within the updated neighborhood of
the baggage).
Situation 2: In the case that the baggage cannot be found, it
may be inferred that the time interval during which the owner
set down the baggage has been overshot. Such an event may
arise when the actual arrival of the baggage in the scene
occurs in the presence of occlusion, or if someone (or some-
thing) else was beside the baggage when the real owner left.
Conversely, in terms of reverse traversal, this is the situation
when the movement of the baggage under inspection from its
detected location goes unnoticed by basic template matching
due to severe occlusion by another sufficiently large object.
In such a case, the system attempts to relocate the baggage
in the forward direction i.e. frame (n + 1).

In a crowded environment, pinpointing the exact own-
er of each unattended baggage blob can be a difficult task
even for a human observer. Given that the chances of erro-
neous ownership assignment can be rather high in such a
scenario, any attempts to zero in on a single individual auto-
matically are best avoided. It is possible that the true owner

Fig. 3 Flowchart description of Module 2

comes in alongside one or more other persons, and given the
view, the system may not be able to discern the actual owner
accurately. In such a case, it would be more reasonable to
attribute possession to all who could possibly be involved.
For this purpose, it is important to estimate the individual
who was the most likely originator of each patch and group
patches accordingly. To establish connections between can-
didate owners and their corresponding patches, parent blobs
from which each patch was derived are tracked. The patches
are then labeled by tracked individuals.

3.4 Continued scene monitoring

The purpose of the third module is to monitor the departure
and the possible return of the owner, which directly controls
the switching on and off of the alarm. After constructing a
representative patch bank, we return to the point when the
baggage was identified as unattended, i.e. the present frame.

123



276 M. Bhargava et al.

Fig. 4 Likelihood of the owner’s existence as a function of time (after
normalization). The dashed curve is generated by matching fore-
ground images with unweighted patch bank while the solid curve is
computed using the weighted patch bank as owner’s template. The seg-
ments in bold f ace correspond to the interval of the owner’s departure

Looking forward in time from then on, the processing mod-
ule tallies every foreground segment with the patch bank and
computes the likelihood of the owner’s existence in the area
(referred to here as the owner’s likelihood). By analyzing the
likelihood as a function of time, the system is able to detect
the owner’s departure from the scene and sounds the alarm
if he or she is missing for more than the predefined duration.
The system continues monitoring the scene for the possible
eventuality of the owner’s return, and to consequently disable
the alarm.

In order to search for candidate owners, every blob in the
vicinity of the baggage is cross-correlated with the entire
patch bank using the metric introduced in the previous sec-
tion (the average of Eqs. (1) and (2)). We define the owner’s
likelihood in each frame by the maximum ratio of the match
among all the appearance bins, where one appearance bin
contains image patches extracted from the same individual.
For each bin, the ratio of match is the weighted sum of the
most similar patches in the bin to the total number of patches
in the bin is evaluated. Patches are weighted according to
their likelihood of being derived from the actual owner, as
explained below.

The patch bank serves as a reservoir of candidate owners’
appearance samples. However, to avoid the risk of desig-
nating specific ownership of the unattended baggage to one
person, the patch bank may contain patches collected from
different individuals who were in the neighborhood at the
time. However, since each patch is treated as equally likely to
be derived from the true owner, the presence of a false owner
(but a candidate member) may generate a owner’s likelihood

Fig. 5 Estimated by Eq. (3), the likelihood of the owner’s departure
is plotted as a function of time (normalized). The event of the owner
leaving the scene happens between frames 383 and 414. The likelihood
function reaches the maximum at frame 413

value that is comparable to the value the actual owner. There-
fore, in order to make the patch bank more responsive to the
real owner, each patch is validated by the interval between
two sub-events.

As shown in the top axis of Fig. 1, the owner stays with
the baggage from the time it was set down to the time it was
detected as unattended. To assign an appropriate weight to
those patches which are more likely to have been extracted
from the real owner, each patch in the bank is compared with
the foreground sub-images in the neighborhood of the unat-
tended baggage within that interval. It must be remembered
that even patches derived from the actual owner may not find
a hit in the bank due to change in effective viewpoint, arising
from changes in the angular position of the person. Thus,
the weight assigned to each patch is composed of a baseline
score as well as a score that is proportional to the percentage
of hits in the verification interval (Fig. 3).

Figure 4 shows two time series of the owner’s likeli-
hood, taken from the same interval of a testing sequence
(Test6 i-LIDS). The dashed and solid function curves were
generated using the unweighted and the weighted patch bank
as the owner’s appearance template respectively. The seg-
ment of the likelihood marked in boldface between frames
383 and 414 corresponds to the event of the owner leaving the
scene. The departure of the owner is hidden behind intense
fluctuations in the curve when the unweighted patch bank is
used, while the same event corresponds to a consistent drop
in the owner’s likelihood using the weighted patch bank.

However, despite the weights, the presence of people who
appear similar to the owner by virtue of clothing or viewpoint
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results in a significant amount of flux in the curve. Therefore,
simple thresholding of the owner’s likelihood using the
weighted patch bank is, by itself, not reliable for the detec-
tion of the owner. Instead, the algorithm uses it to estimate the
time of departure of the owner by analyzing the downward
trend in the likelihood time series. The departure of the owner
gradually reduces the number of hits in the weighted patch
bank and results in a continuous fall in the owner’s likeli-
hood. To gauge the timing of the owner’s complete absence
from the scene, the likelihood decline in every fixed period
is summed within a sliding window. The likelihood of the
owner’s departure, Ldept, is defined in Eq. (3). In this equa-
tion L(n) is the owner’s likelihood at frame n, w is the width
of the sliding window, and tu is the time the baggage found
unattended. The owner’s departure likelihood is character-
ized by two terms. The first term represents the amount of
local likelihood decline, while the second compares the cur-
rent likelihood with the average likelihood in the past. The
departure likelihood is maximized when significant likeli-
hood reduction is captured by both terms. The width of the
sliding window determines the accuracy of the predicted tim-
ing. A very narrow window can result in greater sensitivity to
false positives. The window length, w, is set to 2 s throughout
our experiments. Figure 5 shows the owner’s departure like-
lihood, which corresponds to the same interval highlighted
in Fig. 4. In this example, the time of the owner’s absence
thus estimated is about 1 s earlier than the ground truth.

Ldept(n)

=
∣
∣
∣
∣
∣

n∑

k=n−w+1

d

dk
L(k) ·

⌊
1

2

(

1 − sgn(
d

dk
L(k))

)⌋

· 1

w

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣
L(n) −

n−w∑

k=tu−w+1

L(k)

n − tu

∣
∣
∣
∣
∣
∣
, ∀n > tu (3)

Once the owner is detected as absent, a timer is set. If the
timer lasts longer than t s, an alarm is switched on and the bag-
gage is declared as abandoned. The system continues scan-
ning for the owner in the scene, and computes the likelihood
of the owner’s return. We define the owner’s return likelihood
(L return) in Eq. (4), where td is the time of the owner’s depar-
ture estimated by Eq. (3). Similarly, the owner’s return is
detected when a substantial likelihood increment is observed
in both terms of the equation. However, the reappearance
of the owner does not necessarily imply that the baggage
will be claimed. Therefore, the timer (and alarm) is not dis-
abled until the displacement of baggage unveils the covering
background. As soon as the timer is stopped, the processing
module scans backward in time to locate the accurate tim-
ing of the owner’s coming back by referring to the recorded
return likelihood.

L return(n)

=
∣
∣
∣
∣
∣

n∑

k=n−w+1

d

dk
L(k) ·

⌊
1

2

(

1 + sgn

(
d

dk
L(k)

))⌋

· 1

w

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣
L(n) −

n−w∑

k=td+1

L(k)

n − w − td

∣
∣
∣
∣
∣
∣
, ∀n > td + w (4)

4 Experimental results

To demonstrate the performance of our system, 15 video
sequences extracted from PETS 2006 dataset [14] and the
Imagery Library for Intelligent Detection Systems (i-LIDS)
[8] are tested. These datasets are made publicly available
for research and educational purpose by the UK Information
Commissioner and the UK Home Office Scientific Develop-
ment Bran-ch, respectively. The testing set of our experiment
includes six sequences from PETS 2006 and nine sequences
from i-LIDS (the source dataset of AVSS 2007 special ses-
sion). Each sequence contains one complete event of bag-
gage abandonment except for S3C3 and S6C3 of PETS06.
These public datasets were recorded from different subway
stations in UK. The tested PETS sequences were all taken
from the same camera (there are four viewpoints available).
i-LIDS offers three training sequences and six competition
sequences [7]. The training sequences are labeled by their
projected level of difficulty and the contest ones are named
in order of occurrence.

The 15 sequences tested involve different degrees of scene
density, baggage size and type. The greatest challenges of
the crowded subway setting are severe occlusion, consider-
able perspective distortion, and lighting changes. In addition,
most people in the videos wear dark-colored clothes, jack-
ets and coats, which pose extra difficulties for the system
to discern between individuals. For example, the passing by
of passengers with similar apparel to the owner in question
interferes with the likelihood of the owner’s existence. As
a consequence, the the timing of the alarm was misled at
times. Figures 6 and 7 demonstrate the sequential process
of Test4 i-LIDS and S4C3 PETS06, respectively. The snap-
shots in both figures correspond directly to the progression
of sub-events as described in Fig. 1.

In our experiment, we follow the rules defined by the indi-
vidual conferences. For example, in PETS 2006, baggage is
declared as abandoned when the owner is missing for 30 s,
while the same duration is set to be 60 s in AVSS 2007.
To facilitate faster processing, image sequences are down-
sampled by 4. The parameter settings for each benchmark
dataset are fixed. Our results are compared with the ground
truth data in Table 1. Except in sequences Test1 i-LIDS and
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Fig. 6 Results of processing
sequence Test4 i-LIDS. The
unattended baggage is first
identified in c, which initiates
reverse traversal up to b where
the baggage is not found at the
detected location. Tracking the
moved baggage backward in
time to a where a sufficient
number of the owner’s
appearance patch is collected.
Returning to the point when
unattended baggage is
discovered, d shows the
complete departure of the
owner, which enables the timer.
60 s later, the alarm is triggered
(e), and is eventually set off (f)
by the owner’s return

Test5 i-LIDS, our system is successful in estimating the tim-
ing when the baggage was left unattended. The activation of
alarm and the owner’s return are within 2–4 s of the ground
truth on average.

There are certain circumstances under which our system
fails. This happens largely due to the unavailability of crucial
cues and segmentation problems. An instance of this can be
seen in Test1 i-LIDS. Figure 8a is a snap shot of which shows
the owner’s departure (encircled in red) from the occluded
baggage (outlined in blue). In this particular sequence, both
the owner’s entrance with the baggage and his exit without it
can be barely detected even by a human observer. The bag-
gage was not discovered until the complete dispersion of the
crowd. Subsequent timing of the owner’s departure was erro-
neously predicted due to inaccessibility of the actual owner’s
appearance patches. As a result, the alarm was not activated

before the return of the owner. Similarly, in Test2 i-LIDS, the
baggage was found unattended later than the ground truth
because the baggage could not be segmented out until the
departure of the passengers around it. Test5 i-LIDS, as shown
in Fig. 8b, illustrates another special case. Here, the baggage
and the person sitting next to it are both blended into the same
foreground blob. This arrangement remains until the end of
the sequence, and thus, the k-NN baggage classifier fails to
detect it.

5 Conclusions and future work

Public safety is a critical issue in our world today. Through
the assistance of automatic threat detection systems, security
personnel may be equipped with instant and comprehensive
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Fig. 7 Snapshots of the process
of sequence S4C3 PETS06. In c
the baggage is not in physical
contact with the owner, and is
locked on by the unattended
object detector. The system
traverses backward in time to
search for the initial presence of
the baggage. b to a, image
patches are collected from the
foreground area around the
detected baggage. In d, the
departure of the owner
(marked by red circle) from the
baggage neighborhood (defined
in PETS 2006) starts the timer.
Since the owner never comes
back to the scene after his
leaving, the alarm continues
from e to f (the last frame)
(colour in online)

awareness of potential crises. In this paper, we introduce a
general framework to recognize the event of object abandon-
ment in a busy scene. The proposed algorithm is character-
ized by its simplicity and intuitiveness, and is demonstrated
to be highly effective on benchmark datasets. It is capable of
handling concurrent detection of multiple abandoned objects,
in the presence of substantial occlusion, and perspective dis-
tortion. The algorithm lends itself naturally to the recognition
of a vast variety of related activities, ranging from surveil-
lance of abnormal activities, corridor monitoring to traffic
and cargo management. The modular structure allows the
flexibility of integrating more functionality without remod-
eling the framework.

The performance of our algorithm is impressive; however,
its robustness in certain problematic contexts must be impr-
oved. For example, if people all wear dark and textureless

clothes in the monitored area, fewer patches would be
extracted from the candidate owners, and would be less dis-
criminating. It would be beneficial to use the spatial correla-
tion between patches as another constraint in our patch-based
matchingscheme.Theentireconstellationofmatchedpatches
would then have to be justified by the owner’s patch
bank.

Segmentation is another challenging issue, including fore-
ground as well as object segmentation. For better foreground
segmentation, it would be worth exploring techniques of
adaptive background modeling, or a mechanism for switch-
ing among pre-stored background models (backgrounds of
the platform with and without the train, for example). The
ability to separate merged or occluded foreground objects
would further increase the accuracy of our system. With prior
knowledge of the class of objects, class-based segmentation
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Table 1 Abandoned baggage detection results

Sequence Bag left unattended Alarm starting time Owner’s return

Ground Our Ground Our Ground Our

S2C3_PETS06 (00:00–01:25) 00:51 00:54 01:21 01:24 Never return No return

S3C3_PETS06 (00:00–01:19) Always attended Always attended Never started Not activated Never return No return

S4C3_PETS06 (00:00–00:41) 01:01 01:03 01:31 01:33 Never return No return

S5C3_PETS06 (00:00–00:53) 01:06 01:10 1:36 01:40 Never return No return

S6C3_PETS06 (00:00–00:46) 00:27 00:29 Never started Not activated Never return No return

S7C3_PETS06 (00:00–00:56) 00:26 00:26 00:56 00:56 Never return No return

Easy_i-LIDS (00:00–04:08) 01:54 01:55 03:00 02:59 03:12 03:12

Med_i-LIDS (00:00–04:08) 01:40 01:46 02:42 02:46 03:00 03:00

Hard_i-LIDS (00:00–04:08) 01:40 01:43 02:42 02:43 04:06 04:07

Test1_i-LIDS (00:00–04:08) 02:27 03:11 03:29 Not activated 03:46 03:48

Test2_i-LIDS (04:08–07:10) 05:47 06:02 06:48 07:02 07:03 07:06

Test3_i-LIDS (07:10–10:57) 09:17 09:17 10:19 10:19 10:41 10:43

Test4_i-LIDS (10:57–14:33) 13:05 13:05 14:07 14:05 14:21 14:24

Test5_i-LIDS (14:33–18:13) 16:30 Not detected 17:34 Not activated 18:01 Not detected

Test6_i-LIDS (18:13–21:45) 20:03 20:03 21:07 21:09 21:36 21:40

Fig. 8 Special scene contexts.
a In Test1 i-LIDS, the owner’s
entrance with the baggage and
the following departure without
the baggage are not viewable.
b Throughout Test5 i-LIDS, the
foreground blob of the
unattended baggage is merged
with that of the person sitting
behind it

techniques may be well-suited to this task. Other solutions
include adopting fused information from multiple cameras
to reduce positional ambiguity.

While there are many ideas that we will continue to test
and explore, the basic system framework we present here pro-
vides a powerful solution towards effective, efficient recog-
nition of unusual events in challenging public environments.

References

1. Allen, J., Ferguson, G.: Actions and events in interval temporal
logic. J. Logic Comput. 4(5), 531–579 (1994)

2. Auvinet, E., Grossmann, E., Rougier, C., Dahmane, M., Meu-
nier, J.: Left-luggage detection using homographies and simple
heuristics. In: Proceedings of IEEE International Workshop on
Performance Evaluation of Tracking and Surveillance (PETS),
New York, pp. 51–58 (2006)

3. Bhargava, M., Chen, C.-C., Ryoo, M.S., Aggarwal, J.K.: Detection
of abandoned objects in crowded environments. In: Proceedings of

2007 IEEE International Conference on Advanced Video and Sig-
nal based Surveillance (AVSS), London (2007)

4. Chen, C.-C., Aggarwal, J.K.: An adaptive background model
initialization algorithm with objects moving at different depths.
In: IEEE International Conference on Image Processing (ICIP),
San Diego (2008)

5. Grabner, H., Roth, P., Grabner, M.: Autonomous learning of a
robust background model for change detection. In: Proceedings of
IEEE International Workshop on Performance Evaluation of Track-
ing and Surveillance (PETS), New York, pp. 39–54 (2006)

6. Gutchess, D., Trajkovic, M., Kohen-Solal, E., Lyons, D.,
Jain, A.K.: A Background model initialization algorithm for video
surveillance. In: Proceedings of IEEE International Conference on
Computer Vision (ICCV), pp. 733–740 (2001)

7. i-LIDS Bag and Vehicle Detection Challenge in Association with
AVSS (2007)

8. i-LIDS Dataset for AVSS (2007)
9. Lewis, J.P.: Fast normalized cross-correlation. In: Industrial Light

and Magic, pp. 1–7 (1995)
10. Li, L., Luo, R., Huang, W., Eng, H.: Context-controlled adap-

tive background subtraction. In: Proceedings of IEEE International
Workshop on Performance Evaluation of Tracking and Surveillance
(PETS), New York, pp. 31–38 (2006)

123



Detection of object abandonment using temporal logic 281

11. Lv, F., Song, X., Wu, B., Singh, V.K., Nevatia, R.: Left-luggage
detection using Bayesian inference. In: Proceedings of IEEE Inter-
national Workshop on Performance Evaluation of Tracking and
Surveillance (PETS), New York, pp. 83–90 (2006)

12. Martinez-del-Rincon, J., Herrero-Jaraba, J., Gomez, J., Orrite-
Urunuela, C.: Automatic left luggage detection and tracking using
multi-camera UKF. In: Proceedings of IEEE International Work-
shop on Performance Evaluation of Tracking and Surveillance
(PETS), New York, pp. 59–65 (2006)

13. Nevatia, R., Zhao, T., Hongeng, S.: Hierarchical language-based
representation of events in video streams. In: Proceedings of IEEE
Workshop on Event Mining (2003)

14. PETS 2006 Benchmark Data (2006)
15. Porikli, F.: Detection of temporal static regions by processing video

at different frame rates. In: Proceedings of IEEE International Con-
ference on Advanced Video and Signal based Surveillance (AVSS),
London (2007)

16. Ryoo, M.S., Aggarwal, J.K.: Recognition of composite human
activities through context-free grammar based representation. In:
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), New York, pp. 1709–1718 (2006)

17. Smith, J., Chang, S.-F.: VisualSEEk: a fully automated content-
based image query system. In: Proceedings of ACM International
Conference on Multimedia, Boston (1996)

18. Smith, K., Quelhas, P., Gatica-Perez, D.: Detecting abandoned lug-
gage items in a public space. In: Proceedings of IEEE International
Workshop on Performance Evaluation of Tracking and Surveillance
(PETS), New York, pp. 75–82 (2006)

19. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity
using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell.
(PAMI) 22(8), 747–757 (2000)

123


	Detection of object abandonment using temporal logic
	Abstract
	1 Introduction
	2 Previous works
	3 Algorithm for event recognition
	3.1 Low-level processing
	3.2 Detection of unattended objects
	3.3 Reverse traversal for searching candidate owners
	3.4 Continued scene monitoring

	4 Experimental results
	5 Conclusions and future work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


