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Abstract

Human activity recognition and speech recognition ap-
pear to be two loosely related research areas. However, on
a careful thought, there are several analogies between ac-
tivity and speech signals with regard to the way they are
generated, propagated, and perceived. In this paper, we
propose a novel action representation, the action spectro-
gram, which is inspired by a common spectrographic repre-
sentation of speech. Different from sound spectrogram, an
action spectrogram is a space-time-frequency representa-
tion which characterizes the short-time spectral properties
of body parts’ movements. While the essence of the speech
signal is the variation of air pressure in time, our method
models activities as the likelihood time series of action as-
sociated local interest patterns. This low-level process is
realized by learning boosted window classifiers from spa-
tially quantized spatio-temporal interest features. We have
tested our algorithm on a variety of human activity datasets
and achieved superior results.

1. Introduction
Recognizing human activities from videos is one of the

most intensively studied areas in computer vision. It is
of significant interest in many applications, such as video
surveillance, indexing, abnormal activity detection, elder-
care, and human computer interactions. Compared to the
research in automatic speech recognition (ASR), human ac-
tivity recognition is a relatively young discipline. The first
ASR system was built in the 1950s [9], and now the com-
mercialized services and products are used in daily lives.
These two seemingly unrelated areas share some very sim-
ilar goals and processing methodologies. For example,
we expect an ideal video surveillance system to accurately
segment and semantically annotate continuous activities of
multiple agents in unconstrained environments. Likewise,
the ultimate goal of ASR is to segment and label sponta-
neous and continuous speech into constituent words then
sentences independent of speakers and vocabulary. In addi-
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Figure 1. We compare human activities to speech, and introduce
the analogies between articulatory apparatus and body parts, air
pressure wave and local likelihood time series, and spectrogram
and our spectrogram-like representation.

tion, activity and speech are both temporal data; therefore,
techniques such as Hidden Markov Model (HMM) and Dy-
namic Time Warping (DTW) are commonly adopted for the
recognition of activity and speech sequences.

We are motivated to model human activities as speech
due to the analogies between their production mechanisms.
While speaking, part of our articulatory apparatus continu-
ously reshape the vocal track which causes time varying res-
onances of the exhaled air flow. The magnitude of the prop-
agated air pressure wave is a non-stationary signal which is
relatively stationary when observed in short time intervals.
Therefore, as shown in Fig. 1, one common way to charac-
terize digitized speech signals is to extract the magnitude
spectrum from each equally spaced and overlapped time
window (frame in ASR). The representation that concate-
nates individual spectra in time is called a spectrogram. The
time span of the analysis window is approximately equal to
the period while the vocal track sustains its shape (10 to
50ms). This setup validates the assumption that each time
segment of the speech signal is quasi-stationary [28].

On the other hand, the motion of human body parts
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(limbs, head, torso, etc.) also emit time varying visual pat-
terns at a relatively low frequency band. Nevertheless, if we
are to compare body parts to articulatory apparatus, there
are two minor differences to be clarified. First, it is mainly
the shape of the articulatory apparatus that manipulate the
articulation of phonemes, while human actions are distin-
guished by the simultaneous interest patterns (of motion or
gesture) from parts. Second, for speech, the waveform of
sound is already synthesized within the vocal track, while
in action different body parts create different visual pat-
terns and are perceived as a whole. In the ASR community,
there has been an emerging interest in incorporating visual
information for recognition. Lips are the most visible ar-
ticulatory apparatus; therefore, various visual features [6]
extracted from the corresponding area have been shown to
further recognition performance. Despite all the “acting ap-
paratus” being directly visible, there is little in the way of
research exploring the temporal signals [1, 17] emitted from
body parts for activity recognition (the sounds of actions).

Similar to speech signals, if we are able to model the
associated interest patterns of an action at body part level,
their occurrence likelihood in a short time period can be
also deemed as quasi-stationary. Based on this observa-
tion, we propose a spectrogram-like representation to char-
acterize human activities. We name it action spectrogram
(AS). Compared to a 2D spectrogram, AS is a space-time-
frequency representation which records the occurrence like-
lihood spectra of action specific interest patterns emitted
from body parts. However, there are three major issues to
be solved to make this kind of representation possible:

• how are local interest patterns defined and located?
• how are local interest patterns associated with actions?
• how do we model the occurrence time series of local

interest patterns?

In this work, we provide a complete solution to these issues.
First, we define local interest patterns as the video content
indicated by the spatio-temporal interest points (STIP) [10]
within a figure-centric action sequence. Second, to asso-
ciate local interest patterns with actions, we modify Ad-
aboost algorithm to learn a set of action associated spatio-
temporal interest point detectors (AASTID) from each ac-
tion. Third, we use the boosted AASTID to compute the
occurrence likelihood of local interest patterns from differ-
ent body parts. These likelihood time series are divided into
overlapped short time segments (likelihood segments) and
converted by an 1D Fast Fourier Transformation (FFT) to
synthesize AS. We train Support Vector Machines (SVMs)
to classify an activity AS into the component actions.

Our work provides a novel perspective to the characteri-
zation of human activities, which may induce the transfer
of research in both areas of speech and activity recogni-
tion. We not only make the associations between different

aspects of speech and activity signals, but also contribute a
viable solution to recognize continuous activities as speech.
The remainder of the paper is organized as follows. §2 sum-
marizes the related work. §3 introduces the technical details
of AS computation. In §4, we present the methodologies to
classify a single AS slice and a continuous AS sequence as a
stream of activity. We demonstrate our experimental results
on 4 diverse datasets in §5, and conclude in §6.

2. Related Work
Our spectrogram-like representation of activities is a

type of mid-level feature [12, 10, 18, 21], which is built
upon low-level features such as image gradients or optical
flow. Compared to features that describe the entire human
figures, mid-level features are focused on local regions of
an action sequence to provide efficient yet descriptive rep-
resentation.

As shown in the middle of Fig. 1, speech signals are
compared to the occurrence likelihood of local interest pat-
terns in time. These likelihood time series appear to be very
similar to the trajectories of body parts; however, they are
essentially different. For example, Matikainen et al. [17]
employ a feature tracker to track a number of features over
an activity sequence. The trajectories of the tracked features
are processed and divided into snippets called trajectons.
Under a bag-of-words framework, tracjectons of a video are
matched against a pre-clustered trajecton library and accu-
mulated into a histogram-based action descriptor. Different
from [17], Ali et al. [1] assume that feature tracking is a rel-
atively well-solved problem so that the trajectories of body
reference joints can be reliably used as a feature. The fo-
cus of their method is to model the nonlinear dynamics of
human actions by the theory of chaotic systems.

The use of local spatio-temporal video features to rep-
resent activities has drawn considerable interest in the past
few years [23, 15, 16, 18, 21]. The work by Wang et al.
[26] provides a comprehensive performance evaluation on
different combinations of popular local spatio-temporal fea-
ture detectors and descriptors. Ke et al. [15] and Laptev and
Pérez [16] boost a cascade of space-time window classifiers
to recognize actions. To make the runtime scalable, their
weak learners are trained on features extracted from ran-
dom cuboids of dense video grids. Neibles et al. [18] rep-
resent an image sequence as a bag of video words. Under
their unsupervised learning framework, action recognition
and localization are performed by maximizing the poste-
rior of learned category models. Ryoo and Aggarwal [21]
propose a kernel function to measure the structural simi-
larity between the sets of STIP extracted from two videos.
Their kernel is a histogram which bins the pairwise spatio-
temporal relationships among the video words.

In previous work on spectral analysis of human action,
Cutler and Davis [7] detect periodic motion by analyzing
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Figure 2. Flow diagram of our activity recognition scheme. The vertical arrows indicate the supply of trained models.

the power spectrum of the sequence self-similarity matrix.
Weinland et al. [27] propose a free viewpoint action de-
scriptor based on Fourier analysis of motion history vol-
umes. The shift invariant property of FFT enables them to
extract view-invariant features from cylindrical coordinates.

3. Action Spectrogram

An important process in the computation of AS is to
quantize the occurrence time series of action specific local
interest patterns. This involves the stabilization of human
figures, the learning of action associated local patterns, and
the estimation of occurrence likelihood. Also, we need to
evaluate the proper time interval to divide continuous likeli-
hood series into short segments, which are synthesized into
AS. This process is a part of the overall algorithm as in Fig.
2.

3.1. Preprocessing and Action Features

Preprocessing. Our algorithm, similar to [11, 12], operates
on the figure-centric spatio-temporal volume of activity.
Depending on the setup of the activity recognition system,
this generally requires detection and continuous tracking of
human objects. In most of our tested datasets [2, 23, 22],
there is one human object in a frame; therefore, we perform
tracking by human detection.

Given a raw video stream, the goal of our preprocessing
is to extract the sequence of figure-centric bounding boxes.
We adopt an approach similar to [8] for human figure stabi-
lization. Our human figure stabilizer is a linear SVM classi-
fier which is trained with Histograms of Oriented Gradients
(HOG) [8] descriptors extracted from manually cropped
figure-centric bounding boxes and negative examples from
random patches around the figures. We perform a multi-
scale human detection in the local neighborhood defined
by the previously detected location. We keep track of the
stabilized bounding box coordinates and the corresponding
HOG vectors for later processing.
Action Features. We use both shape and motion histogram
based features to characterize human activities. In addition
to the performance benefits, combining features of different

types provides a broader coverage of activities. For exam-
ple, there are scarce features due to motion which can be
extracted to distinguish certain static actions such as ‘stand’
from ‘gesture’. More specifically, within a figure-centric
volume, we represent successive poses by time series of
HOG and motions by time series of Histogram of Oriented
Optical Flow (HOF) [16].

HOG descriptor divides the subject figure into equally
spaced regions called cells, and represents the edge struc-
ture of each cell by the angular distribution of gradients.
Compared to a cell, a block covers a larger region which
consists of several cells. In [8] the cell histograms within a
block are normalized to provide better invariance to illumi-
nation and shading. Here we characterize the appearance of
human body parts at the spatial scale of a block. The over-
lapped blocks are more robust against minor stabilization
errors and describe parts with the context of adjacent cells.
As shown in Fig. 3(a), our implementation uses 2× 2 cell
blocks and follows the common settings as in [8]. Note that
we compute HOG time series via figure stabilization.

We describe the motion field between each pair of suc-
cessive figure-centric frames by HOF descriptor. Besides
the types of feature being characterized, the main difference
between HOG and our modified HOF descriptor is the ori-
entation mapping carried out. We follow [8] to use unsigned
gradient vectors in HOG computation. In general applica-
tions, the acting directions of a person are not used as a cue
to distinguish actions. Therefore, to make optical flow vec-
tors symmetric about the vertical axis, the orientation of a
flow vector is converted by

θof =

{
sgn(θof ) · π − θof , |θof | > π

2
θof , otherwise.

(1)

The cells of the HOF descriptor capture the relative motions
of parts at a finer spatial scale. The same as HOG, we de-
scribe the motion patterns of parts in every 2× 2 cell block.

3.2. Learning Action Associated Interest Patterns

We compare the learning of action associated local in-
terest patterns to the search of correspondence between a
uttered phoneme and the shapes of those active articulatory
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apparatus. Actions appear to vary across both time and body
parts; however, not every local video feature contributes to
the correct recognition of actions. One effective technique
to select a variety of discriminant features is to evaluate the
weak classifiers trained on an overcomplete set of features
[24]. Our method is similar to Ke et al. [15] and Laptev and
Pérez [16] in the sense of discovering discriminant cubic
features in a boosting framework. Nevertheless, our work
differs from theirs with regard to the method of selecting
boosting instances and the format of action classifiers as
suggested in §2 and to be detailed later.

In general, STIP detectors are used to localize local
video structures which pose significant variations in both
space and time. Our AASTID are boosted space-time win-
dow classifiers, which are not trained to detect points of
interest but to produce the occurrence likelihood of action
specific STIP. Here we assume, within the figure-centric
volumes of the same action, the STIP that are in close spa-
tial proximity of each other present similar interest pat-
terns. One important observation that motivates us to boost
AASTID from STIP is that action associated interest pat-
terns occur in an intermittent fashion. For example, in
a spatio-temporal volume of a person ‘kicking’, the most
descriptive video cuboids cover the sweeping leg in time.
However, after the leg goes down, there is no subsequent
interest pattern emitted from the leg position until the next
kick. Previous methods such as [15, 16] select boosting
examples by randomly sampling cubiods from dense video
grids. Their approach inevitably includes positive features
from video cuboids which do not relate to the action (e.g.
arbitrary background volumes) and negative features which
do not characterize the rest of the actions well. As a result,
the discriminating power of the boosted weak classifiers are
weakened by labeling uninformative video cuboids as posi-
tive and negative examples (Fig. 3(b) for example).

We use the occurrence likelihood series of action associ-
ated STIP as features. Ideally the likelihood signal emitted
from an AASTID is expected to peak, bottom, and level
(about 0.5) when classifying features from positive, nega-
tive, and random video cuboids, respectively. We detail the
implementation of AASTID as follows.
Extracting STIP. The popular STIP detector proposed by
Dollár et al. [10] is a combination of a 2D Gaussian spatial
kernel and 1D Gabor temporal filters. Their STIP detector
is devised to be responsive not only to periodic motions but
also to a wide range of other interesting space-time patterns.
Via their implantation, we are able to extract a dense set of
STIP to capture the details of a training volume. As shown
in Fig. 3(a), a STIP response volume is computed using
R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2, where g(x, y;σ) is a
Gaussian smoothing kernel and hev(t; τ, ω) and hod(t; τ, ω)
are a quadrature pair of Gabor temporal filters. STIP are
fired at local maxima by applying non-maximum suppres-

sion on the R volume. We quantize a local maxima to the
grid location of a 2× 2 cell block while maintaining its
temporal location. This is achieved by comparing the in-
tegrals of R within the quantized video cuboids (section of
a block) which overlap with the local maxima. We compute
time series of HOG and HOF features from the quantized
video cuboid with the maximum R integral. We denote a
STIP of action α by cbα(u, v, t), which is characterized by
h(u, v, t, θ) vectors, where (u, v) is the quantized grid lo-
cation, t represent the time and the corresponding training
volume, and θ indicates the type of histogram feature.
Boosting AASTID. We boost a set of AASTID per action.
These detectors are mostly localized at the related body
parts (see Fig. 1). Unlike [16], for reliable estimation of
STIP occurrence likelihood, we employ instance weighted
linear kernel SVM [3] for weak learners

min
w,b,ξ

1

2
wTw +

n∑
i=1

Ciξi

subject to yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0.

(2)

In this primal problem, the inverse of margin width together
with the weighted sum of training errors are being mini-
mized. Ci and ξi correspond to the penalty and training
error of the instance-label pair (xi, yi). This SVM formu-
lation enables a weak learner to minimize the classifica-
tion error of samples weighted by previous boosting iter-
ations. Our weighted SVM based weak classifiers are more
robust than those of weighted Fisher Linear Discriminant
[16] based given the limited number of training instances.

We modify Adaboost to learn AASTID from spatio-
temporally scattered STIP. We follow the basic settings as
in [24] and focus on presenting the differences. The set of
AASTID boosted from action α are among the best weak
learners Dα of the total (nr − 1) × (nc − 1) × nf weak
learners dα, where nr, nc, and nf are the numbers of
cell rows, columns, and feature types. For each grid lo-
cation (u, v), we denote the set of all STIP time instances
as T (u, v). A weak classifier dα(u, v, θ) is learned to dis-
tinguish θ represented cbα(u, v, Tα) from cb¬α(u, v, T¬α),
where Tα∪T¬α = T (u, v) and Tα∩T¬α = ∅. The weight-
ing of h(u, v, t, θ) at iteration i iswi(u, v, t, θ), which is up-
dated by intersecting t with T (ubest, vbest) of iteration i−1
(i > 1). wi(u, v, t, θ) is updated to εi−1

1−εi−1
wi−1(u, v, t, θ)

if and only if cb(u, v, t) is only temporally overlapped
with the correctly classified cb(ubest, vbest, Tcorrect) where
Tcorrect ⊂ T (ubest, vbest) and εi−1 is the minimum
weighted error in i − 1. This implies that any cb(u, v, t)
overlap with the wrongly detected cb(ubest, vbest, Twrong)
or missing a temporal intersection will be emphasized in
the next iteration.
Estimating likelihood. Similar to the preprocess of speech
signals, our weak learners are trained to output calibrated

3428



…

(b) (c)

(a)

Figure 3. (a) Left: a slice of a STIP response volume. By referring
to it, we quantize a local maximum at the head position to a grid
location. (b) Left: Drun boosted from quantized STIP as in (a).
Right: Drun boosted from dense video grids. The solid squares
are gradient based Drun, and the dashed ones are optical flow
based. The Dα computed by our method effectively capture the
action associated body parts instead of some random background.
(c) The sample AS time slices from the sequences (columns) of
different actions (bend, jack, walk, wave1 in row) from [2].

likelihood values. Given the histogram vector, h ∈ Rn,
and the indicator of α, y ∈ {0, 1}, we aim to estimate the
posterior probability p(y = 1|h) using Dα. The method
proposed by Wu et al. [29] approximates the posterior prob-
abilities by coupling them with pairwise class probabilities.
They start with modeling each pairwise class probability as
a sigmoid of the corresponding decision value f

p(y = i|y = i ∪ j,h) ≈ 1

eAf+B
, i 6= j (3)

where A and B are obtained by minimizing the negative
log-likelihood function while f is calculated by performing
cross-validation on the training set. The formulation of their
pairwise coupling is based on the Bayesian equality

p(y = i|y = i ∪ j,h)p(y = j|h)
= p(y = j|y = i ∪ j,h)p(y = i|h). (4)

This equality simply suggests that p(y = i|h) is propor-
tional to p(y = i|y = i ∪ j,h) in a binary problem, while it
requires convex optimization for a multi-class problem.

3.3. Synthesizing Action Spectrogram

Compared to a sound spectrogram, the additional dimen-
sion of space in our representation characterizes the spa-
tially distributed AASTID. We classify a figure-centric ac-
tion volume with the spatial array of AASTID and synthe-
size the ith AS slice from the frame interval< (i−1)lstep+
1, (i − 1)lstep + lD − 1 + lseg >, where lstep, lD, lseg are
the temporal lengths of sampling step, AASTID, and likeli-
hood segment, respectively. From each lD − 1+ lseg frame

sampled snippet of the volume, we can extract nD length
lseg likelihood segments, where nD is the total number of
AASTID. The likelihood segments of a snippet are trans-
formed by FFT and concatenated along the dimension of
space to form a 2D time slice of the AS volume. We show
the sample AS slices from 12 sequences of 4 actions in Fig.
3(c), where one action is distinguished not only by the ac-
tive AASTID responses (bright rows) but also by its spec-
tral signature (bright columns). For effective characteriza-
tion of action, the selection of AASTID and the estimation
of lseg are introduced.
Selecting AASTID. As we boost the best weak learners on
the spatial grids, they represent the most valid weak hy-
potheses about the action in the measure of detection rate;
however, it is their spectral waveforms that are directly used
as features. Therefore, we trim the best weak classifiers
of each action to form the contributed set of AASTID. Let
Dα(i) be the ith best weak classifier of α, where i repre-
sents the trippet of (ui, vi, θi). We classify both the posi-
tive and negative (¬α) training volumes with Dα(i) and di-
vide the emitted likelihood time series into n+ and n− fixed
length segments. The spectra of the segments are denoted as
{x+

1,i,x
+
2,i, ...,x

+
n+,i} and {x−1,i,x

−
2,i, ...,x

−
n−,i}. The dis-

criminative value, F (i), of Dα(i) emitted spectra is formu-
lated as a Fisher discriminant like score [5]∥∥x̄+

i − x̄i
∥∥+ ∥∥x̄−i − x̄i

∥∥
1

n+−1

n+∑
j=1

∥∥x+
j,i − x̄+

i

∥∥+ 1
n−−1

n−∑
j=1

∥∥x−j,i − x̄−i
∥∥ (5)

where x̄i, x̄
+
i , and x̄−i are the mean spectra of the entire,

positive, negative training sets. The Dα with top F values
are selected as the contributed set of AASTID from α.
Estimating lseg. One popular approach to analyzing activ-
ities is to divide a video into snippets of frames and per-
form recognition from the snippets. In most of the litera-
ture, the duration of individual snippets is decided heuris-
tically. Our speech-like representation of action provides a
ready medium to tackle this problem. That is, by assuming
each action is a random process, we can approximate the
proper lseg by performing a stationarity test on its realiza-
tions (likelihood series). Common methods for the test of
stationarity include auto-correlation function and runs test
[14]. They all require a sufficient number of samples per re-
alization to make a meaningful judgement; however, most
of the dataset videos are shorter than 3 seconds and sam-
pled at a relatively low frame rate. Besides, these tests do
not provide a normalized measure to indicate the degree sta-
tionarity.

We propose to approximate lseg by calculating the aver-
age pairwise spectral similarities over segment lengths. In
Fig. 4, as we sample longer and longer likelihood segments
from the same action of [2], the corresponding AS slices
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converge gradually in waveforms. The average pairwise
similarity of the n AS slices of α is computed by

S(l, α) =
1

n(n− 1)

n∑
i=1

∑
j:j 6=i

NCC(Xα
i ,X

α
j ) (6)

where (Xα
i ,X

α
j ) represents a pair of flattened 1D AS slices

synthesized from length l segments, and NCC is short for
Normalized Cross-Correlation. Given the target correlation
value, we approximate a sufficient segment length, lseg , by
thresholding the similarity curves. The AS of aperiodic ac-
tions such as ‘bend’ require longer l to capture the complete
occurrence. Note that we can certainly use a large lseg to
meet the target correlation value; however, this inevitably
reduces the time resolution of the recognized activity.

4. Classification
We train a collection of one-against-one linear SVM

classifiers [3] to recognize the AS slices of different ac-
tions. We prefer linear SVMs to other linear classifiers
because they are rather discriminant while providing bet-
ter out-of-sample generalization. Moreover, compared to
nonlinear classifiers, they are easy to train, fast to run,
and achieve consistently decent performance on different
datasets and feature settings. We have tested several non-
linear kernel SVMs on our spectral data, for example, RBF,
multi-channel Gaussian [30], and NCC kernel [25]. In our
experiments, these nonlinear SVMs usually perform simi-
larly or slightly better than the linear ones; however, their
testing accuracies are sometimes subject to overfitting.

To recognize composite human activities, we consider a
hybrid HMM approach [13], which has been implemented
for real-world ASR applications. Traditional HMM based
ASR systems model the state emission probabilities of
phonemes using mixtures of Gaussians, which are replaced

by more sophisticated classifiers such as Artificial Neural
Networks (ANN) or SVM in a hybrid system. With the
states corresponding to phonemes, spoken words are mod-
eled by individual HMMs. Likewise, we slice-wise clas-
sify an activity AS into a sequence of actions, and model
the temporal evolution of the sequential actions via activity
HMMs. Our linear SVMs are trained to output the pos-
terior probabilities (see §3.2) of actions, which can be ap-
plied to activity HMMs. Note that using our representation,
interaction types of activities can be modeled by specialized
HMM; for example, Oliver et al.[20] use coupled HMM to
recognize person-person interactions.

5. Experimental Results

Fig. 5 summarizes the 4 datasets adopted to evaluate
our method. The challenges posed by these datasets include
low-resolution, blurry imagery, shadows, broken tracks, and
variations in viewpoints, scales, scenes, lighting conditions,
and clothing. We follow the same principles to initialize
the parameters across datasets. For the computation of ori-
entation histograms, we use 9 bin histograms, and set the
block size approximately equal to 2

3 of the limb length with
the stride (block overlap) of a cell size. The histogram time
series extracted from a video cuboid is normalized with L2-
Hys [8]. We manipulate the values of σ and τ so that there
are about 20 to 50 STIP fired per second depending on the
complexity of the training action. Based on Eq. 5, no more
than 10 AASTID per action are selected among the best
weak learners which score less than a 45% error rate. To
speedup runtime, we reduce the video frame rate to half
of the original, but double the time resolution of likelihood

series by spline interpolation. 2

⌈
log

lseg
2

⌉
-point FFT is per-

formed to synthesize AS. For videos shorter than lseg , we
replicate the existing likelihood series so that there is at least
one AS slice formed per sequence. Our experimental results
and findings are detailed as follows.
Weizmann. The Weizmann dataset [2] was filmed at
medium resolution in a controlled environment. This
dataset consists of 93 sequences of 10 actions performed
by 9 individuals. We apply our preprocessing technique
to extract figure-centric volumes, because some of the pro-
vided foreground masks contain incomplete figures (e.g.
shahar side). Evaluated with leave-one-sequence-out cross-
validation (LOOCV), our method achieves 100% accuracy
on this dataset.
KTH. Similar to the resolution setting of Weizmann, KTH
[23] is a much more challenging dataset. As shown in Fig.
5(b), KTH is comprised of 6 actions, which were taken at
varied scales with persons wearing different clothing in dif-
ferent scenes. The entire dataset contains 2,391 short clips
acted by 25 individuals. We follow the setup as in [23] to
partition the dataset into 3 parts by person identity. We
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(a)

(b)

(c)

(d)
Figure 5. We tested our method on 4 datasets: (a) Weizmann
(b) KTH (c) UT-Tower (d) VIRAT Aerial Video. The actions
are self-explanatory from the figures except those from the Aerial
dataset, where the actions are ‘stand’,‘dig’,‘throw’,‘walk’,‘carry’,
and ‘run’.

use 2
3 of the dataset for training and the other 1

3 for test-
ing. Our linear SVMs correctly recognize 94.4% of the AS
slices in the testing set. The average accuracy per action is
90.9%. The confusion matrix together with the comparison
with other reported methods are tabulated in Table 1.

We are surprised to find that the per-video accuracy is
about 3.6% lower than the per AS slice accuracy (90.8% v.s.
94.4%). After examining the error sequences, it is discov-
ered that a significant portion of the misclassified clips are
shorter than lseg (1.5 seconds); however, these short clips
represent 27% of the test set. Therefore, we conjecture that
the disturbing likelihood spectra caused by an insufficient
number of samples (< lseg) and padding artifacts have led
to the high error rate in short clips.
UT-Tower. The UT-Tower dataset [4] is a low-resolution
dataset where actions were filmed top-down in a near aerial
view and the human figures are 20 to 30 pixels in height.
This dataset is composed of 9 actions performed by 6 per-
sons in 2 scenes. Each subject repeats the same action twice

box 97.6 1.6 0.8 0.0 0.0 0.0

jog 0.0 0.0 0.0 68.0 18.8 13.2

run 0.8 0.0 0.0 3.9 84.4 10.9

walk 0.0 0.0 0.0 1.6 0.0 98.4

0.0 0.0 0.0

0.8 97.6 0.0 0.0 0.0

0.0
hand-
clap
hand-
wave

0.8

1.6

99.2

box
handclap

handwave

jog run walk

Method ACC %
Ryoo [21] 91.1
Proposed 90.9
Fathi [12] 90.5

Niebles [18] 83.3
Dollár [10] 80.2

Schuldt [23] 71.7
Ke [15] 63.0

Table 1. Our results on the KTH dataset: the confusion matrix for
per-video classification and the comparison with other methods.

so that there are 108 sequences. We perform LOOCV to
compare with other methods as in [22]. The accuracy of our
method is 98.2%, which is the best result reported on this
dataset so far. The two incorrectly classified sequences are
the 9th sequence of ‘walk’ and the 5th sequence of ‘wave2’,
in which the low color contrast between a person’s clothes
and background confuses the classifier.
VIRAT Aerial Video. For the previous 3 datasets, our
speech-like representation and recognition strategy demon-
strate results that are better than or comparable to the state-
of-the-art. To test the effectiveness of our methodology, we
challenge it with video sequences taken from a Unmanned
Aerial Vehicle (UAV). We manually select 42 sequences out
of 6 actions from a large collection of UAV recorded footage
named the VIRAT Aerial Video dataset [19]. The resolution
of the videos is 720 × 480 pixels with the tracks of objects
computed at 10 fps. As shown in Fig. 5(d), the imagery
taken from an UAV not only creates difficulties due to low
figure resolution, but also poses problems with vague object
appearances, salient shadows, interrupted tracking (person
temporarily out of FOV), and time varying viewpoints and
scales. Due to these issues, part of the footage even requires
repeated human scrutiny to perform ground truth annota-
tion. Therefore, to propose a meaningful evaluation set, we
select tracks of human actions which do not require a sec-
ond inspection for labeling.

We refine the tracks with the preprocessing step to ac-
quire stabilized action sequences. Even with this additional
process, the quality of the extracted bounding boxes cannot
be as consistent as those acquired from the other 3 datasets
(see Fig. 5). To assess the performance of our method, we
compare our accuracy with that of a baseline approach. We
adopt time series of HOG extracted from overlapped spatio-
temporal volumes (match the AS computation intervals) as
the baseline descriptor. For the sake of fair comparison, we
train linear SVMs on the HOG descriptors and use LOOCV
accuracy as a measure. The average accuracy of our method
is 38.3%, while it is 33.3% for the baseline approach. The
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stand 50.0 37.5 0.0 12.5 0.0 0.0 50.0 37.5 0.0 0.0 0.0 12.5

walk 12.5 25.0 12.5 0.0 0.0 12.5 37.5 12.5 37.5 50.0 0.0 0.0

carry 0.0 0.0 12.5 25.0 25.0 0.0 25.0 12.5 25.0 37.5 12.5 25.0

run 0.0 0.0 20.0 20.0 20.0 20.0 20.0 0.0 0.0 0.0 40.0 60.0

dig throw walk carry

20.0 40.0

runstand

dig

throw

12.5

0.0

37.50.0

0.0

37.5

0.0

12.5 25.0 12.5

20.0 20.0

0.0

40.0 0.0

0.0

20.0 20.0

37.5 12.5 12.5

20.0

Table 2. The confusion matrices of ours (AS) and a baseline
method (HOG time series) on the selected VIRAT Aerial Video
dataset. The pair of percentages in each bi-colored cell repre-
sent our/baseline accuracy. The overall accuracies are 38.3% v.s.
33.3%.

confusion matrices are summarized in Table 2.

6. Conclusion
We have presented a novel activity recognition scheme

which adapts naturally from ASR. We use both local video
content and occurrence likelihood spectra to verify actions.
More specifically, localized at body parts, the AASTID
are trained to be responsive only to action specific inter-
est patterns. The proposed AS is used to describe the tem-
poral evolution of the ASSTID emitted likelihood spectra.
The speech-like representation and recognition scheme of-
fer two major advantages. First, we transform an activity se-
quence into simultaneous temporal signals, which enable us
to analyze activities with signal processing techniques (e.g.
§3.3). Second, we model activities as the composition of
speech, which facilitates the evaluation of higher level activ-
ities with linguistic-like models. Our method demonstrates
the feasibility of representing human activities as speech-
like signals, which enables the further analysis of activities
by various state-of-the-art speech recognition technologies.

7. Acknowledgement
This material is based upon the work supported by the

Defense Advanced Research Projects Agency (DARPA) un-
der Contract No. HR0011-08-C-0135.

References
[1] S. Ali, A. Basharat, and M. Shah. Chaotic invariants for human ac-

tion recognition. In ICCV, 2007.
[2] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions

as space-time shapes. In ICCV, 2005.
[3] C.-C. Chang and C.-J. Lin. LIBSVM: a library for

support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[4] C.-C. Chen and J. K. Aggarwal. Recognizing human action from a
far field of view. In WVMC, 2009.

[5] Y.-W. Chen and C.-J. Lin. Combining SVMs with various feature
selection strategies. Springer, 2006.

[6] C. C. Chibelushi, F. Deravi, and J. S. D. Mason. A review of speech-
based bimodal recognition. In IEEE Trans. Multimedia, volume 4,
pages 23 –37, 2002.

[7] R. Cutler and L. Davis. Robust real-time periodic motion detection,
analysis, and applications. In PAMI, volume 22, pages 781–796,
1999.

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In CVPR, 2005.

[9] K. H. Davis, R. Biddulph, and S. Balashek. Automatic recognition
of spoken digits. In J. Acoust. Soc. Am., 1952.

[10] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recog-
nition via sparse spatio-temporal features. In VS-PETS, 2005.

[11] A. A. Efros, A. C. Berg, G. Mori, and J. Malik. Recognizing action
at a distance. In ICCV, 2003.

[12] A. Fathi and G. Mori. Action recognition by learning mid-level mo-
tion features. In CVPR, 2008.

[13] A. Ganapathiraju, J. E. Hamaker, and J. Picone. Applications of
support vector machines to speech recognition. In IEEE Trans. Sig.
Proc., volume 52, pages 2348 – 2355, 2004.

[14] J. D. Gibbons. Nonparametric Methods for Quantitative Analysis.
American Sciences Press, 1985.

[15] Y. Ke, R. Sukthankar, and M. Hebert. Efficient visual event detection
using volumetric features. In ICCV, 2005.
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